Sub-Fourier sensitivity in ac driven quantum systems

David Cubero

Departamento de Física Aplicada I Universidad de Sevilla, Spain

dcubero@us.es

TPCE19: Transport Phenomena in Complex Environments, Erice (Sicily), Sept. 2019

(日) (四) (문) (문) (문)

Avoided crossing and sub-Fourier sensitivity in ac-driven quantum systems

David Cubero¹, Gordon R.M. Robb², Ferruccio Renzoni³

¹ Universidad de Sevilla (Spain)

² University of Strathclyde, Glasgow (UK)

³ University College London (UK)

Phys. Rev. Lett. 121, 213904 (2018).

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Model	Intro	q-ratchet	Avoided crossings	Theory	Demonstration
O	00000	00	O	0	000
Outline					

- 1 Model system
- 2 What is sub-Fourier Sensing?
- 3 Quantum ratchet
- 4 The quantum ratchet: Avoided crossings
- 5 Exploiting avoided crossings: the theory
- 6 Exploiting avoided crossings: implementation

Model	Intro	q-ratchet	Avoided crossings	Theory	Demonstration
○	00000	00	0	0	000
Outline					

1 Model system

2 What is sub-Fourier Sensing?

Quantum ratchet

- 4 The quantum ratchet: Avoided crossings
- 5 Exploiting avoided crossings: the theory
- 6 Exploiting avoided crossings: implementation

Model	Intro	q-ratchet	Avoided crossings	Theory	Demonstration
●	00000	00	O	0	000
Model s	ystem				

• A single particle x(t) (quantum or classical)

Model	Intro	q-ratchet	Avoided crossings	Theory	Demonstration
●	00000	00	O	0	
Model s	ystem				

- A single particle x(t) (quantum or classical)
- In a space-periodic energy landscape V(x) (maybe time-dependent)

Model	Intro	q-ratchet	Avoided crossings	Theory	Demonstration
●	00000	00	O	O	000
Model s	ystem				

- A single particle x(t) (quantum or classical)
- In a space-periodic energy landscape V(x) (maybe time-dependent)
- In the presence of dissipation (or not)

Model	Intro	q-ratchet	Avoided crossings	Theory	Demonstration
●	00000	00	O	0	
Model s	ystem				

- A single particle x(t) (quantum or classical)
- In a space-periodic energy landscape V(x) (maybe time-dependent)
- In the presence of dissipation (or not)
- Under time-periodic driving F(t), F(t + T) = F(t)

Model	Intro	q-ratchet	Avoided crossings	Theory	Demonstration
●	00000	00	O	0	000
Model s	ystem				

- A single particle x(t) (quantum or classical)
- In a space-periodic energy landscape V(x) (maybe time-dependent)
- In the presence of dissipation (or not)
- Under time-periodic driving F(t), F(t + T) = F(t)

Model	Intro	q-ratchet	Avoided crossings	Theory	Demonstration
●	00000	00	O	0	000
Model s	ystem				

- A single particle x(t) (quantum or classical)
- In a space-periodic energy landscape V(x) (maybe time-dependent)
- In the presence of dissipation (or not)
- Under time-periodic driving F(t), F(t + T) = F(t)

Ratchet:

$$\langle v \rangle = \lim_{t \to \infty} \frac{\langle x(t) \rangle - \langle x(0) \rangle}{t}$$

Model	Intro	q-ratchet	Avoided crossings	Theory	Demonstration
O	00000	00	O	0	000
Outline					

1 Model system

2 What is sub-Fourier Sensing?

Quantum ratchet

- 4 The quantum ratchet: Avoided crossings
- 5 Exploiting avoided crossings: the theory
- 6 Exploiting avoided crossings: implementation

Model	Intro	q-ratchet	Avoided crossings	Theory	Demonstration
O	●0000	00	O	0	000
What	is sub-Fo	urier sensi	ng?		

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → の < ()

Model	Intro	q-ratchet	Avoided crossings	Theory	Demonstration
o	●0000	00	0	O	000
What	is sub-Fo	urier sensi	ng?		

$$f(t) = \int_{-\infty}^{\infty} d\omega \, F(\omega) e^{i\omega t}$$

$$e^{i\omega t} = \cos(\omega t) + i\sin(\omega t)$$

 $\omega = \frac{2\pi}{T}$

Joseph Fourier

- ● ● ●

æ

$$f(t) = \int_{-\infty}^{\infty} d\omega F(\omega) e^{i\omega t}$$

• Fourier inequality

 $\Delta \omega \Delta t \geq 2\pi$

 $\Delta \omega$: width of $F(\omega)$

 Δt : width of f(t)

Joseph Fourier

$$f(t) = \int_{-\infty}^{\infty} d\omega F(\omega) e^{i\omega t}$$

• Fourier inequality

 $\Delta \omega \Delta t \ge 2\pi$

 $\Delta \omega$: width of $F(\omega)$

 Δt : width of f(t)

• Fourier limit: Two frequencies cannot be distinguished before a time proportional to the inverse of their difference

$$f(t) = \int_{-\infty}^{\infty} d\omega F(\omega) e^{i\omega t}$$

• Fourier inequality

 $\Delta \omega \Delta t \geq 2\pi$

 $\Delta \omega$: width of $F(\omega)$

 Δt : width of f(t)

• Fourier limit: Two frequencies cannot be distinguished before a time proportional to the inverse of their difference (?)

Model	Intro	q-ratchet	Avoided crossings	Theory	Demonstration
O	0●000	00	0	0	000
What	is sub-Foi	urier sensi	ng?		

A sensor based on resonances:

æ

-

Model of the operation of the operation

A sensor based on resonances:

• For every periodic driving F(t),

$$F(t+T) = F(t), \quad \omega = \frac{2\pi}{T}$$

合 ▶ ◀

Model Intro q-ratchet Avoided crossings Theory Demonstration oo What is sub-Fourier sensing?

A sensor based on resonances:

• For every periodic driving F(t),

$$F(t+T)=F(t), \quad \omega=rac{2\pi}{T}$$

• ...we have the system response $\langle v \rangle(\omega)$:

$$\langle v \rangle = \lim_{T_s \to \infty} \frac{1}{T_s} \int_0^{T_s} dt \, v(t)$$

A sensor based on resonances:

• For every periodic driving F(t),

$$F(t+T)=F(t), \quad \omega=rac{2\pi}{T}$$

• ...we have the system response $\langle v \rangle(\omega)$:

$$\langle v \rangle = \lim_{T_s \to \infty} \frac{1}{T_s} \int_0^{T_s} dt \, v(t)$$

 T_s := interaction or observation time

• At a resonance ω_0 :

A sensor based on resonances:

• For every periodic driving F(t),

$$F(t+T)=F(t), \quad \omega=rac{2\pi}{T}$$

• ...we have the system response $\langle v \rangle(\omega)$:

$$\langle v \rangle = \lim_{T_s \to \infty} \frac{1}{T_s} \int_0^{T_s} dt \, v(t)$$

- At a resonance ω_0 :
 - Ideal response: (infinite-time response)

A sensor based on resonances:

• For every periodic driving F(t),

$$F(t+T)=F(t), \quad \omega=rac{2\pi}{T}$$

• ...we have the system response $\langle v \rangle(\omega)$:

$$\langle v \rangle = \lim_{T_s \to \infty} \frac{1}{T_s} \int_0^{T_s} dt \, v(t)$$

- At a resonance ω_0 :
 - Ideal response: (infinite-time response)
 - $\langle v \rangle(\omega) = 0$ if $\omega \neq \omega_0$ (near ω_0)

Model Intro q-ratchet Avoided crossings Theory Demonstration 000 Vhat is sub-Fourier sensing?

- A sensor based on resonances:
 - For every periodic driving F(t),

$$F(t+T) = F(t), \quad \omega = rac{2\pi}{T}$$

• ...we have the system response $\langle v \rangle(\omega)$:

$$\langle v \rangle = \lim_{T_s \to \infty} \frac{1}{T_s} \int_0^{T_s} dt \, v(t)$$

- At a resonance ω_0 :
 - Ideal response: (infinite-time response)
 - $\langle v \rangle(\omega) = 0$ if $\omega \neq \omega_0$ (near ω_0)
 - $\langle v \rangle(\omega) \neq 0$ if $\omega = \omega_0$

Model Intro q-ratchet Avoided crossings Theory Demonstration What is sub-Fourier sensing?

A sensor based on resonances:

• For every periodic driving F(t),

$$F(t+T) = F(t), \quad \omega = \frac{2\pi}{T}$$

• ...we have the system response $\langle v \rangle(\omega)$:

$$\langle v \rangle = \lim_{T_s \to \infty} \frac{1}{T_s} \int_0^{T_s} dt \, v(t)$$

- At a resonance ω_0 :
 - Ideal response: (infinite-time response)
 - $\langle v \rangle(\omega) = 0$ if $\omega \neq \omega_0$ (near ω_0)
 - $\langle v \rangle(\omega) \neq 0$ if $\omega = \omega_0$
 - Real response: (finite-time response)

Model Intro q-ratchet Avoided crossings Theory Demonstration What is sub-Fourier sensing?

A sensor based on resonances:

• For every periodic driving F(t),

$$F(t+T) = F(t), \quad \omega = rac{2\pi}{T}$$

• ...we have the system response $\langle v \rangle(\omega)$:

$$\langle v \rangle = \lim_{T_s \to \infty} \frac{1}{T_s} \int_0^{T_s} dt \, v(t)$$

- At a resonance ω_0 :
 - Ideal response: (infinite-time response)
 - $\langle v \rangle(\omega) = 0$ if $\omega \neq \omega_0$ (near ω_0)
 - $\langle v \rangle(\omega) \neq 0$ if $\omega = \omega_0$
 - Real response: (finite-time response)
 - $\langle v \rangle(\omega)$ with a width $\Delta \omega$ about ω_0 .

Model Intro q-ratchet Avoided crossings Theory Demonstration What is sub-Fourier sensing?

A sensor based on resonances:

• For every periodic driving F(t),

$$F(t+T) = F(t), \quad \omega = rac{2\pi}{T}$$

• ...we have the system response $\langle v \rangle(\omega)$:

$$\langle v \rangle = \lim_{T_s \to \infty} \frac{1}{T_s} \int_0^{T_s} dt \, v(t)$$

- At a resonance ω_0 :
 - Ideal response: (infinite-time response)
 - $\langle v \rangle(\omega) = 0$ if $\omega \neq \omega_0$ (near ω_0)
 - $\langle v \rangle(\omega) \neq 0$ if $\omega = \omega_0$
 - Real response: (finite-time response)
 - $\langle v \rangle(\omega)$ with a width $\Delta \omega$ about ω_0 .
 - $\Delta\omega
 ightarrow 0$ when $T_s
 ightarrow \infty$ (observation time)

Model	Intro	q-ratchet	Avoided crossings	Theory	Demonstration
o	00●00	00	O	O	000
What	is sub-Fo	urier sensi	ng?		

At resonances:

• Fourier limit: (for linear systems) System bandwidth $\Delta \omega \sim \frac{2\pi}{T_s}$ T_s : interaction or observation time

Model	Intro	q-ratchet	Avoided crossings	Theory	Demonstration
o	00●00	00	O	0	000
What	is sub-Fo	urier sensi	ng?		

At resonances:

- Fourier limit: (for linear systems)
 - System bandwidth $\Delta \omega \sim rac{2\pi}{T_s}$
 - T_s : interaction or observation time
- Sub-Fourier sensing: (non-linear systems)

$$\Delta\omega\ll\frac{2\pi}{T_s}$$

• Sub-Fourier sensing: (non-linear systems)

$$\Delta \omega \ll \frac{2\pi}{T_s}$$
 Example: guantum $\delta\text{-kicked-rotor}$

David Cubero Brownian ratchets

- ● ● ●

• Sub-Fourier sensing: (non-linear systems)

$$\Delta \omega \ll \frac{2\pi}{T_s}$$
 Example: auantum $\delta\text{-kicked-rotor}$

Cold atoms exposed to N pulses of off-resonant standing waves of light

Szriftgiser et al, PRL 89, 224101 (2002). Talukdar et al, PRL 105, 054103 (2010).

• Sub-Fourier sensing: (non-linear syste

$$\Delta\omega\llrac{2\pi}{T_s}$$

Example:

quantum δ -kicked-rotor

Cold atoms exposed to N pulses of off-resonant standing waves of light

Szriftgiser et al, PRL 89, 224101 (2002). Talukdar et al. PRL 105, 054103 (2010)

FIG. 1. Below the Fourier limit. (a) Experimental measurement of the zero-velocity atom number, p(0), as a function of the ratio $r = f_2/f_1$ of the two excitation frequencies. Parameters: $f_1 = 18$ kHz, K = 42, $N_1 = 10$, $\tau = 3 \mu$ s and in order to avoid pulses overlap we set $\varphi = \pi$. Averaging: 100 times. (b) $F_{1/2}(r)$, for comparison with the Fourier transform of the kick sequence (amplitude and offset are arbitrary for $F_{1/2}$).

$$\Delta f_2 T \approx \frac{1}{38} \ll 1. \tag{3}$$

• Sub-Fourier sensing: (non-linear syste

$$\Delta\omega\ll\frac{2\pi}{T_s}$$

Example:

quantum δ -kicked-rotor

Cold atoms exposed to N pulses of off-resonant standing waves of light

Szriftgiser et al, PRL 89, 224101 (2002). Talukdar et al, PRL 105, 054103 (2010).

FIG. 1. Experimentally measured fidelity distribution due to five kicks of strength $\phi_d = 0.8$ followed by a shifted kick of strength $5\phi_d$. The mean energy (triangle same five kick rotor is shown for comparison. Numeric lations of the experiment for a condensate with momentu $0.06\hbar G$ are also plotted for fidelity (dashed line) ar energy (solid line). The amplitude and offset of the s

• Sub-Fourier sensing: (non-linear systems)

$$\Delta\omega\ll\frac{2\pi}{T_s}$$

A second example:

classical rocked ratchet with biharmonic driving

6

• Sub-Fourier sensing: (non-linear systems)

$$\Delta\omega\llrac{2\pi}{T_s}$$

A second example:

classical rocked ratchet with biharmonic driving

$$F(t) = F_1 \cos(\omega_1 t) + F_2 \cos(\omega_2 t + \theta)$$

• Sub-Fourier sensing: (non-linear systems)

$$\Delta\omega\llrac{2\pi}{T_s}$$

A second example:

classical rocked ratchet with biharmonic driving

 Model o
 Intro occool
 q-ratchet o
 Avoided crossings o
 Theory o
 Demonstration occool

 What is sub-Fourier sensing?

• Sub-Fourier sensing: (non-linear systems)

$$\Delta\omega\ll\frac{2\pi}{T_s}$$

A second example:

classical rocked ratchet with biharmonic driving

$$F(t) = F_1 \cos(\omega_1 t) + F_2 \cos(\omega_2 t + \theta)$$

Resonances at $\omega_2 = (p/q)\omega_1$
SubFourier sensitivity:

$$\Delta\omega_2 = \frac{2\pi}{q T_s}$$

Casado-Pascual, DC & Renzoni, PRE 88, 062919 (2013). DC, Casado-Pascual, & Renzoni, PRL 112, 174102 (2014).

What is sub-Fourier sensing?

• Sub-Fourier sensing: (non-linear systems)

 $\Delta\omega\ll\frac{2\pi}{\tau}$

A second example:

classical rocked ratchet with biharmonic driving

 $F(t) = F_1 \cos(\omega_1 t) + F_2 \cos(\omega_1 t)$ Resonances at $\omega_2 = (p/q)\omega_1$ SubFourier sensitivity:

 $\Delta\omega_2 = \frac{2\pi}{q T_s}$

Casado-Pascual, DC & Renzoni, PRE 88, 062919 (2013). DC, Casado-Pascual, & Renzoni, PRL 112, 174102 (2014).

FIG. 1 (color online). Current vs driving frequency ω_2 for the overdamped system (1) with the driving F_2 and $F_0 = 5.75$. Reduced units are defined in the simulations such that $U_0 = k = \gamma = \omega_1 = 1$. Empty and filled diamonds correspond to $T_s = 10^4$ and 10^5 , respectively. The lines are the predictions given by (6) with q = 113, p = 355, and $v_0 = 1/(2q)$. The horizontal bars depict the frequency width (7), showing a resolution 113 times smaller than that expected from the Fourier width $2\pi/T_s$.

Model	Intro	q-ratchet	Avoided crossings	Theory	Demonstration
O	00000	००	0	0	000
Outline					

- 1 Model system
- 2 What is sub-Fourier Sensing?
- 3 Quantum ratchet
- 4 The quantum ratchet: Avoided crossings
- 5 Exploiting avoided crossings: the theory
- 6 Exploiting avoided crossings: implementation

Model	Intro	q-ratchet	Avoided crossings	Theory	Demonstration
O	00000	●0	0	0	000
The qu	antum r	atchet			

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

Model	Intro	q-ratchet	Avoided crossings	Theory	Demonstration
O	00000	●0	O	O	000
The qu	antum r	atchet			

• No dissipation, $H = p^2/(2m) + V(x) - xF(t)$

⊡ ► < ≣ ►

Model	Intro	q-ratchet	Avoided crossings	Theory	Demonstration
O	00000	●O	O	O	000
The qu	antum r	atchet			

- No dissipation, $H = p^2/(2m) + V(x) xF(t)$
- Bose-Einstein condensate (ultracoldatoms) [Science 326, 1241 (2009)]

Model	Intro	q-ratchet	Avoided crossings	Theory	Demonstration
O	00000	●O	O	O	000
The qu	antum r	atchet			

- No dissipation, $H = p^2/(2m) + V(x) xF(t)$
- Bose-Einstein condensate (ultracoldatoms) [Science 326, 1241 (2009)]
- Space-periodic V(x + L) = V(x)

Model	Intro	q-ratchet	Avoided crossings	Theory	Demonstration
O	00000	●0	0	0	000
The qu	iantum r	atchet			

- No dissipation, $H = p^2/(2m) + V(x) xF(t)$
- Bose-Einstein condensate (ultracoldatoms) [Science 326, 1241 (2009)]
- Space-periodic $V(x + L) = V(x) \Rightarrow$ Bloch states (k)

Model	Intro	q-ratchet	Avoided crossings	Theory	Demonstration
O	00000	●O	0	O	000
The qu	antum r	atchet			

- No dissipation, $H = p^2/(2m) + V(x) xF(t)$
- Bose-Einstein condensate (ultracoldatoms) [Science 326, 1241 (2009)]
- Space-periodic $V(x + L) = V(x) \Rightarrow$ Bloch states (k)
- Time-periodic driving F(t + T) = F(t)

Model	Intro	q-ratchet	Avoided crossings	Theory	Demonstration
O	00000	●0	0	0	000
The qu	iantum r	atchet			

- No dissipation, $H = p^2/(2m) + V(x) xF(t)$
- Bose-Einstein condensate (ultracoldatoms) [Science 326, 1241 (2009)]
- Space-periodic $V(x + L) = V(x) \Rightarrow$ Bloch states (k)
- Time-periodic driving $F(t + T) = F(t) \Rightarrow$ Floquet states (ε)

Model	Intro	q-ratchet	Avoided crossings	Theory	Demonstration
O	00000	○●	O	O	000
The qu	uantum r	atchet			

- Space-periodic $V(x + L) = V(x) \Rightarrow$ Bloch states (k)
- Time-periodic driving $F(t + T) = F(t) \Rightarrow$ Floquet states (ε_n)

Model	Intro	q-ratchet	Avoided crossings	Theory	Demonstration
O	00000	⊙●	0	O	000
The q	uantum r	atchet			

- Space-periodic $V(x + L) = V(x) \Rightarrow$ Bloch states (k)
- Time-periodic driving $F(t + T) = F(t) \Rightarrow$ Floquet states (ε_n)

• Bloch-Floquet states with current $v_n = \frac{1}{\hbar} \frac{\partial \epsilon_n}{\partial k}$

Model	Intro	q-ratchet	Avoided crossings	Theory	Demonstration
O	00000	○●	0	O	000
The qu	iantum r	atchet			

- Space-periodic $V(x + L) = V(x) \Rightarrow$ Bloch states (k)
- Time-periodic driving $F(t + T) = F(t) \Rightarrow$ Floquet states (ε_n)
- Bloch-Floquet states with current $v_n = \frac{1}{\hbar} \frac{\partial \epsilon_n}{\partial k}$

 $V(x) = V_0 \cos(2\pi x/L), \ F(t) = F_1 \cos(\omega_1 t) + F_2 \cos(\omega_2 t + \theta), \ \omega_2 = 2\omega_1, \ \theta = -\pi/2$

Model	Intro	q-ratchet	Avoided crossings	Theory	Demonstration
O	00000	00	O	0	000
Outline					

- 1 Model system
- 2 What is sub-Fourier Sensing?
- 3 Quantum ratchet
- 4 The quantum ratchet: Avoided crossings
- 5 Exploiting avoided crossings: the theory
- 6 Exploiting avoided crossings: implementation

The quantum ratchet: Avoided crossings

Denisov, Morales-Molina, Flach & Hänggi, Phys. Rev. A 75 063424 (2007)

The quantum ratchet: Avoided crossings

Model	Intro	q-ratchet	Avoided crossings	Theory	Demonstration
O	00000	00	O	○	000
Outline					

- 1 Model system
- 2 What is sub-Fourier Sensing?
- 3 Quantum ratchet
- 4 The quantum ratchet: Avoided crossings
- 5 Exploiting avoided crossings: the theory
- 6 Exploiting avoided crossings: implementation

Model	Intro	q-ratchet	Avoided crossings	Theory	Demonstration
O	00000	00	O	●	000
Exploitir	ng avoide	d crossings	: the theory		

Frequency dependence near resonances?

æ

Frequency dependence near resonances?

• Bloch-Floquet states:

$$v_n(k,\theta) = \frac{1}{\overline{T}} \int_{t_0}^{t_0+T} dt \langle \psi_{k,n}(t) | (p/m) | \psi_{k,n}(t) \rangle$$

Frequency dependence near resonances?

- Bloch-Floquet states: $v_n(k,\theta) = \frac{1}{T} \int_{t_0}^{t_0+T} dt \langle \psi_{k,n}(t) | (p/m) | \psi_{k,n}(t) \rangle$
- Finite-time current: $v_{T_s} = \frac{1}{T_s} \int_{t_0}^{t_0+T_s} dt v(t)$ $v(t) = \langle \psi(t) | (p/m) | \psi(t) \rangle$

 Model
 Intro
 q-ratchet
 Avoided crossings
 Theory
 Demonstration

 Exploiting avoided crossings: the theory

Frequency dependence near resonances?

- Bloch-Floquet states: $v_n(k,\theta) = \frac{1}{T} \int_{t_0}^{t_0+T} dt \langle \psi_{k,n}(t) | (p/m) | \psi_{k,n}(t) \rangle$
- Finite-time current: $v_{T_s} = \frac{1}{T_s} \int_{t_0}^{t_0+T_s} dt v(t)$ $v(t) = \langle \psi(t) | (\rho/m) | \psi(t) \rangle$
- Asymptotic approximation: DC & Renzoni, PRE 97, 062139 (2018).

$$v_{T_s} \sim \frac{1}{\Delta \omega_2 T_s} \int_{\theta_0}^{\theta_0 + \Delta \omega_2 T_s} d\widetilde{\theta} \sum_{k_0, n} |C_{k_0, n}|^2 v_n \left(k(\widetilde{\theta}), \widetilde{\theta}\right),$$

 $\Delta\omega_{2} = \omega_{2} - \omega_{1}p/q, \quad \theta_{0} = \theta + \omega_{2}t_{0},$ $k(\widetilde{\theta}) = k_{0} + \lim_{\Delta\omega_{2} \to 0} \int_{t_{0}}^{t_{0} + T \lfloor \frac{\widetilde{\theta} - \theta}{\Delta\omega_{2}T} \rfloor} dt' F(t')/\hbar,$ $|C_{k_{0}, p}|^{2} = |\langle \psi_{k_{0}, p}(t_{0}) | \psi(t_{0}) \rangle|^{2}$

 Model
 Intro
 q-ratchet
 Avoided crossings
 Theory
 Demonstration

 Composition
 0
 0
 0
 0
 0

Frequency dependence near resonances?

- Bloch-Floquet states: $v_n(k,\theta) = \frac{1}{T} \int_{t_0}^{t_0+T} dt \langle \psi_{k,n}(t) | (p/m) | \psi_{k,n}(t) \rangle$
- Finite-time current: $v_{T_s} = \frac{1}{T_s} \int_{t_0}^{t_0+T_s} dt v(t)$ $v(t) = \langle \psi(t) | (\rho/m) | \psi(t) \rangle$
- Asymptotic approximation: DC & Renzoni, PRE 97, 062139 (2018).

$$v_{T_s} \sim \frac{1}{\Delta \omega_2 T_s} \int_{\theta_0}^{\theta_0 + \Delta \omega_2 T_s} d\widetilde{\theta} \sum_{k_0, n} |C_{k_0, n}|^2 v_n \left(k(\widetilde{\theta}), \widetilde{\theta}\right),$$

$$\Delta\omega_2 = \omega_2 - \omega_1 p/q, \quad \theta_0 = \theta + \omega_2 t_0,$$

 $k(\theta) = k_0 + \lim_{\Delta \omega_2 \to 0} \int_{t_0}^{\infty + \tau + \tau \Delta \omega_2 \tau} dt' F(t')/\hbar_{t_0}$

 $|C_{k_0,n}|^2 = |\langle \psi_{k_0,n}(t_0)|\psi(t_0)\rangle|^2$

 Model
 Intro
 q-ratchet
 Avoided crossings
 Theory
 Demonstration

 Exploiting avoided crossings: the theory

Frequency dependence near resonances?

- Bloch-Floquet states: $v_n(k,\theta) = \frac{1}{T} \int_{t_0}^{t_0+T} dt \langle \psi_{k,n}(t) | (p/m) | \psi_{k,n}(t) \rangle$
- Finite-time current: $v_{T_s} = \frac{1}{T_s} \int_{t_0}^{t_0+T_s} dt v(t)$ $v(t) = \langle \psi(t) | (\rho/m) | \psi(t) \rangle$
- Asymptotic approximation: DC & Renzoni, PRE 97, 062139 (2018).

$$v_{T_s} \sim \frac{1}{\Delta \omega_2 T_s} \int_{\theta_0}^{\theta_0 + \Delta \omega_2 T_s} d\widetilde{\theta} \sum_{k_0, n} |C_{k_0, n}|^2 v_n \left(\frac{k(\widetilde{\theta})}{\widetilde{\theta}}, \widetilde{\theta} \right),$$

$$\Delta\omega_{2} = \omega_{2} - \omega_{1}p/q, \quad \theta_{0} = \theta + \omega_{2}t_{0},$$

$$k(\tilde{\theta}) = k_{0} + \lim_{\Delta\omega_{2} \to 0} \int_{t_{0}}^{t_{0} + T \lfloor \frac{\tilde{\theta} - \theta}{\Delta\omega_{2}T} \rfloor} dt' F(t')/\hbar,$$

 Model
 Intro
 q-ratchet
 Avoided crossings
 Theory
 Demonstration

 Composition
 0
 0
 0
 0
 0

Frequency dependence near resonances?

- Bloch-Floquet states: $v_n(k,\theta) = \frac{1}{T} \int_{t_0}^{t_0+T} dt \langle \psi_{k,n}(t) | (p/m) | \psi_{k,n}(t) \rangle$
- Finite-time current: $v_{T_s} = \frac{1}{T_s} \int_{t_0}^{t_0+T_s} dt v(t)$ $v(t) = \langle \psi(t) | (\rho/m) | \psi(t) \rangle$
- Asymptotic approximation: DC & Renzoni, PRE 97, 062139 (2018).

$$v_{T_s} \sim \frac{1}{\Delta \omega_2 T_s} \int_{\theta_0}^{\theta_0 + \Delta \omega_2 T_s} d\widetilde{\theta} \sum_{k_0, n} |C_{k_0, n}|^2 v_n \left(k(\widetilde{\theta}), \widetilde{\theta}\right),$$

$$\begin{split} \Delta \omega_2 &= \omega_2 - \omega_1 p/q, \quad \theta_0 = \theta + \omega_2 t_0, \\ k(\widetilde{\theta}) &= k_0 + \lim_{\Delta \omega_2 \to 0} \int_{t_0}^{t_0 + T \lfloor \frac{\widetilde{\theta} - \theta}{\Delta \omega_2 T} \rfloor} dt' F(t') / \hbar, \\ &|C_{k_0,n}|^2 = |\langle \psi_{k_0,n}(t_0) | \psi(t_0) \rangle|^2. \end{split}$$

Model	Intro	q-ratchet	Avoided crossings	Theory	Demonstration
O	00000	00	0	0	000
Outline					

- 1 Model system
- 2 What is sub-Fourier Sensing?
- 3 Quantum ratchet
- 4 The quantum ratchet: Avoided crossings
- 5 Exploiting avoided crossings: the theory
- 6 Exploiting avoided crossings: implementation

- ● ● ●

э

 $\psi(x, t = -2T) = \text{const.}, F_0 \text{ during } 2T \text{ such as to start from the right } k_0$. Top (+) has $\theta = -1.0851$, bottom (-) has $\theta = -1.0845$.

 $\psi(x, t = -2T) = \text{const.}, F_0 \text{ during } 2T \text{ such as to start from the right } k_0$. Top (+) has $\theta = -1.0851$, bottom (-) has $\theta = -1.0845$.

Model	Intro	q-ratchet	Avoided crossings	Theory	Demonstration
O	00000	00	O	0	00●
Outline					

- 1 Model system
- 2 What is sub-Fourier Sensing?
- 3 Quantum ratchet
- 4 The quantum ratchet: Avoided crossings
- 5 Exploiting avoided crossings: the theory
- 6 Exploiting avoided crossings: implementation

Model	Intro	q-ratchet	Avoided crossings	Theory	Demonstration
O	00000	00	O	0	00●
Outline					

- 2 What is sub-Fourier Sensing?
- Quantum ratchet
- 4 The quantum ratchet: Avoided crossings
- 5 Exploiting avoided crossings: the theory
- 6 Exploiting avoided crossings: implementation
 - Thank you for you attention!