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Model system

A single particle x(t) (quantum or classical)

In a space-periodic energy landscape V (x) (maybe
time-dependent)

In the presence of dissipation (or not)

Under time-periodic driving F (t), F (t + T ) = F (t)

Ratchet:

〈v〉 = lim
t→∞

〈x(t)〉 − 〈x(0)〉
t
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What is sub-Fourier sensing?

Fourier transform (1820)

f (t) =

∫ ∞
−∞

dω F (ω)e iωt

Fourier inequality

∆ω∆t ≥ 2π

∆ω: width of F (ω)

∆t: width of f (t)

Fourier limit: Two frequencies cannot be
distinguished before a time proportional
to the inverse of their difference

Joseph Fourier
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What is sub-Fourier sensing?

A sensor based on resonances:

For every periodic driving F (t),

F (t + T ) = F (t), ω =
2π

T
...we have the system response 〈v〉(ω):

〈v〉 = lim
Ts→∞

1

Ts

∫ Ts

0
dt v(t)

Ts := interaction or observation time

At a resonance ω0:

Ideal response: (infinite-time response)

〈v〉(ω) = 0 if ω 6= ω0 (near ω0)
〈v〉(ω) 6= 0 if ω = ω0

Real response: (finite-time response)

〈v〉(ω) with a width ∆ω about ω0.
∆ω → 0 when Ts →∞ (observation time)
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What is sub-Fourier sensing?

Sub-Fourier sensing: (non-linear systems)

∆ω � 2π

TsExample:
quantum δ-kicked-rotor

Cold atoms exposed to N pulses of
off-resonant standing waves of light

Szriftgiser et al, PRL 89, 224101 (2002).

Talukdar et al, PRL 105, 054103 (2010).
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What is sub-Fourier sensing?

Sub-Fourier sensing: (non-linear systems)

∆ω � 2π

Ts
A second example:
classical rocked ratchet with
biharmonic driving

F (t) = F1 cos(ω1t) + F2 cos(ω2t + θ)
Resonances at ω2 = (p/q)ω1

SubFourier sensitivity:
∆ω2 = 2π

q Ts

Casado-Pascual, DC & Renzoni,

PRE 88, 062919 (2013).
DC, Casado-Pascual, & Renzoni,

PRL 112, 174102 (2014).
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The quantum ratchet

No dissipation, H = p2/(2m) + V (x)− xF (t)

Bose-Einstein condensate (ultracoldatoms)

[Science 326, 1241 (2009)]

Space-periodic V (x + L) = V (x) ⇒ Bloch states (k)

Time-periodic driving F (t + T ) = F (t) ⇒ Floquet states (ε)

David Cubero Brownian ratchets
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The quantum ratchet

Space-periodic V (x + L) = V (x) ⇒ Bloch states (k)

Time-periodic driving F (t + T ) = F (t) ⇒ Floquet states (εn)

Bloch-Floquet states with current vn =
1

~
∂εn
∂k

k

𝜀n

V (x) = V0 cos(2πx/L), F (t) = F1 cos(ω1t) + F2 cos(ω2t + θ), ω2 = 2ω1, θ = −π/2

David Cubero Brownian ratchets
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The quantum ratchet: Avoided crossings
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Denisov, Morales-Molina, Flach &Hänggi, Phys. Rev. A 75 063424 (2007)
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The quantum ratchet: Avoided crossings

X

p

0 2 4 6−6

−3

0

3

6

0.01

0.02

0.03

x

p
0 2 4 6–6

–3

0

3

6

0.01

0.02

0.03

0.04

0.05

–3 –2 –1 0

θ

0

0.04

v

–2.704

–2.701

–2.698

(b)

(a)

εn

Use for sub-Fourier sensors?
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Exploiting avoided crossings: the theory

Frequency dependence near resonances?

Bloch-Floquet states:
vn(k , θ) = 1

T

∫ t0+T
t0

dt〈ψk,n(t)|(p/m)|ψk,n(t)〉

Finite-time current: vTs = 1
Ts

∫ t0+Ts

t0
dt v(t)

v(t) = 〈ψ(t)|(p/m)|ψ(t)〉
Asymptotic approximation: DC & Renzoni, PRE 97, 062139 (2018).

vTs ∼
1

∆ω2Ts

∫ θ0+∆ω2Ts

θ0

d θ̃
∑
k0,n

|Ck0,n|
2 vn
(

k(θ̃), θ̃
)
,

∆ω2 = ω2 − ω1p/q, θ0 = θ + ω2t0,

k(θ̃) = k0 + lim∆ω2→0

∫ t0+Tb θ̃−θ
∆ω2T

c
t0

dt ′F (t ′)/~,

|Ck0,n|2 = |〈ψk0,n(t0)|ψ(t0)〉|2
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Exploiting avoided crossings: the implementation

F (t) = F1 cos(ω1t) + F2 cos(ω2t + θ) q = 1 10×better
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Exploiting avoided crossings: the implementation

V0 = F1 = F2 = ω1 = 1, θ = −π/2. 10×better
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Exploiting avoided crossings: the implementation

V0 = F1 = 1, F2 = 2.4, ω1 = 1.2, k0 = 0.4236, θ = −1.247
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Exploiting avoided crossings: the implementation

V0 = F1 = 1, F2 = 2.4, ω1 = 1.2, 1000×better
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ψ(x , t = −2T ) =const., F0 during 2T such as to start from the
right k0. Top (+) has θ = −1.0851, bottom (−) has θ = −1.0845.
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Thank you for you attention!

David Cubero Brownian ratchets
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